salam kenal admin,,admin saya mau bertanya mengenai pengenceran,mohon pencerahannya:
bilas asam formiat 90% sebanyak 500 ml akan dibuat menjadi asam formiat 85%, perlu diencerkan dengan akuades berapa banyak dan bagaimana rumus pengerjaannya?
trimaksih
jawaban / pembahasan :
CARA PERTAMA
pake rumus V1.M1=V2.M2
V1 = 500ml dan M1 = 90%
V2 = X ml dan M2 = 85%
bila pake rumus 500 ml . 90% = X ml . 85%
jadi X ml = 45000 ml / 85 = 529,41176 ml
maka akuades yang ditambahkan 529,41176 ml - 500 ml= 29,41176 ml
CARA KEDUA
menggunakan persentase
pada kondisi awal
90% artinya asam formiat sebanyak 450 ml di dalam 500 ml larutannya
atau dengan kata lain
90% = (450 ml / 500 ml) . 100%
(volum akuades = 500 ml - 450 ml = 50 ml)
pada kondisi akhir
85%,
jumlah asam formiat tetap yakni 450 ml, tidak boleh berkurang dan tidak boleh bertambah, yang berubah hanya volum larutan.
jadi 85% artinya asam formiat 450 ml ada di dalam berapa ml larutannya...(volum larutan dianggap X ml)
jadi 85% = (450 ml / X ml) . 100%
X ml = 45000 ml / 85 = 529,41176 ml
(volum akuades = 529,41176 ml - 450 ml = 79,41176 ml)
pada kondisi awal volum akuades = 50 ml
pada kondisi akhir volum akuades = 79,41176 ml
terlihat ada kenaikan volum akuades di dalam larutan. naiknya volum akuades berasal dari akuades yang ditambahkan agar terjadi pengenceran
maka akuades yang ditambahkan 79,41176 ml - 50 ml = 29,41176 ml
Rabu, 10 September 2014
Selasa, 09 September 2014
Struktur Atom
Struktur Atom
Atom terdiri dari proton, neutron dan elektron. Proton dan neutron berada di dalam inti atom. Sedangkan elektron terus berputar mengelilingi inti atom karena muatan listriknya. semua elektron bermuatan negatif (-) dan semua proton bermuatan positif (+) . sementara itu neutron bermuatan netral. Elektron bermuatan yang bermuatan negatif (-) ditarik oleh proton yang bermuatan positif (+) pada inti atom.
Dalam hal ini, semua atom di alam semesta akan terjadi bermuatan positif (+) karena ada kelebihan muatan listrik positif (+) di dalam proton. Akibatnya, semua atom akan saling bertolak satu sama lain.
A. Perkembangan Teori Atom
Konsep atom dikemukakan oleh Demokritos yang tidak didukung oleh ekperimen yang menyakinkan, sehingga tidak dapat diterima oleh beberpa ahli ilmu pengetahuan dan filsafat.
Pengembangan konsep atom-atom secara ilmiah dimulai oleh John Dalton (1805), kemudian dilakukan oleh Thomson (1897), Rutherford (1911), dan disempurnakan oleh Bohr (1914)
Hasil ekperimen yang memperkuat konsep atom ini menghasilakn gambaran mengenai susunan parikel-partikel tersebut didalam atom. Gambaran ini berfungsi untuk memudahkan dalam memahami sifat-sifat kimia suatu atom. Gambaran susunan partikel-partikel dasar dalam atom disebut model atom.
2. Model Atom Thomson

Atom adalah bola bulat bermuatan
positif dan di permukaan tersebar
elektron yang bermuatan negatif
3. Model Atom Rutherford
Atom adalah bola berongga yang tersusun dari inti atom dan eletron yang tersusun dari inti atom dan e
lektron
yang mengelilinginya. Inti atom bermuatan positif dan massa atom
terpusat pada inti atom. Kelemahan dari Rutherford tidak dapat
menjelaskan mengapa elektron tidak jatuh ke dalam inti atom. Berdasarkan
teori fisika, gerakan elektron mengitari inti ini disertai pemancaran
energi elektron akan berkurang dan lintasannya makin lama akan mendekati
inti dan jatuh ke dalam inti.
4. Model Atom Niels Bohr

kulit-kulit elektron bukan kedudukan yang pasti dari suatu elektron, tetapi hanya suatu keboleh jadian saja.
B. Percobaan-percobaan Mengenal Struktur Atom
1. Elektron
Percobaan tabung sinar katode pertama kali dilakukan oleh William Crookes (1875). Hasil ekperimennya yaitu ditemukannya seberkas sinar yang muncul dari arah katode menuju ke anode yang disebut sinar katode.
George Johnstone Stoney (1891) yand mengusulkan nama sinar katode disebut “elektron”. Kelemahan dari stoney tidak dapat menjelaskan pengaruh elektron terhadap perbedaan sifat antara atom suatu unsur dengan atom dalam unsur lainya. Antonine Henri
Beecquerel (1896) menemukan sinar yang dipancarkan dari unsur-unsur radioaktof yang sifatnya mirip dengan elektron.
Joseph John Thomson (1897) melanjutkan eksperimen William Crookes yaitu pengaruh medan listrik dan medan magnet dalam tabung sinar katode.

Hasil percobaan J.J Thomson menujukkan bahwa sinar katode dapat dibelokkan ke arah kutub positif medan listrik. Hal ini membuktikan terdapat partikel bermuatan negatif dalam suatu atom.
Besarnya muatan dalam eletron ditemukan oleh Robert Andreww miliki (1908) melalui percobaan tetes Minyak Milikan seperti gambar berikut.

Minyak disemprotkan kedalam tabung yang bermuatan litrik. Akibat gaya tarik grafitasi akan mengendapkan tetesan minyak yang turun. Apabila tetesan minyak diberi muatan negatif maka akan tertarik ke kutub positif medan listrik. Dari hasil percobaan Milikan dan Thomson diperoleh muatan elektron-1 dan massa elektron 0.
2. Proton
Jika
massa elektron 0 bearti suatu partikel tidak mempunyai massa. Namun
pada kenyataan nya partikel materi mempunyai massa yang dapat diukur dan
atom bersifat atom netral. Eugene Goldstein (1886) melakukan eksperimen
dari tabung gas yang memiliki katode, yang diberi lubang-lubang dan
diberi muatan listrik.
Hasil eksperimen tersebut membuktikan bahwa pada saat terbentuk elektron yang menuju anode, terbentuk pula sinar positif yang menuju arah berlawanan melalui lubang pada katode. Setelah berbagai gas dicoba dalam tabung ini, ternyata gas hidrogenlah yang menghasilkan sinar muatan positif yang paling kecil baik massa maupun muatanya, sehingga partikel ini disebut proton. Massa proton = 1 sma (satuan massa atom) dan muatan proton = +1
3. Inti atom
Setelah penemuan proton dan elektron, Ernest Rutherford melakukan penelitian penembakan lempang tipis emas. Jika atom terdiri dari partikel yang bermuatan positif dan negatif maka sinar alfa yang ditembakkan seharusnya tidak ada yang diteruskan/ menembus lempeng sehingga mincullah istilah inti atom. Ernest Rutherford dibantu oleh Hans Geiger dan Ernest Marsden (1911) menemukan konsep inti atom didukung oleh penemuan sinar X oleh WC. Rontgen (1895) dan penemuan zat radioaktif (1896). Percobaan Rutherford dapat digambarkan sebagai berikut.
Hasil percobaan ini membuat Rutherford menyatakan hipotesisnya bahwa atom tersusun dari inti atom yang bermuatan positif dan dikelilingi elektron yang bermuatan negatif, sehingga atom bersifat netral. Massa inti atom tidak seimbang dengan massa proton yang ada dalam inti atom, sehingga dapt diprediksi bahwa ada partikel lain dalam inti atom.
4. Neutron
Prediksi dari Rutherford memicu W. Bothe dan H. Becker (1930) melakukan eksperimen penembakan partikel pada inti atom berilium (Be) dan dihasilkan radiasi partikel berdaya tembus tinggi.
James Chadwick (1932). Ternyata partikel yang menimbulkan radiasi berdaya tembus tinggi itu bersifat nertal atau tidak bermuatan dan massanya hampir sama dengan proton. Partikel ini disebut neutron dan dilambangkan
C. Menetukan Struktur Atom Berdasarkan Tabel Periodik
1. Partikel Dasar Penyusun Atom
Atom adalah bagian terkecil dari suatu unsur yang masih memiliki sifat unsur tersebut. Struktur atom menggambarkan bagaimana partikel-partikel dalam atom tersusun, atom tersusun atas inti atom dan dikelilingi elektron-elektron yang tersebar dalam kulit-kulitnya. Secara sistematis dapat digambarkan partikel-partikel sub atom berikut.

Sebagian besar atom terdiri dari ruang hampa yang dalamnya terdapat inti yang sangat kecil di mana massa dan muatan positifnya dipusatkan dan dikelilingi oleh elektron-elektron yang bermuatan negatif. Inti atom tersusun atas sejumlah proton dan neutron. Jumlah proton dalam inti atom menentukan muatan inti atom, sedangkan massa atom inti ditentukan oleh banyaknya proton dan neutron. Selanjutnya ketiga partikel sub atom (proton, neutron, dan elektron ) dangan kombinasi tertentu membentuk atom suatu unsur yang lambangnya dapat dituliskan :
X : lambang suatu unsur
Z : nomor atom
A : nomor massa
2. Memahami Susunan dari Sebuah Atom
Suatu atom memiliki sifat dan massa yang khas satu sama lain. Dengan penemuan partikel penyusun atom dikenal istilah nomor atom (Z) dan nomor massa (A)
Penulisan lombang atom unsur menyetarakan nomor atom dan nomor massa.
Dimana :
A = nomor massa
Z = nomor atom
X = lambang unsur
Nomor Massa (A) = Jumlah proton + Jumlah Neutron
Atau
Jumlah Neutron = Nomor massa – Nomor atom
Nomor Atom (Z) = Jumlah proton
1. Nomor Atom (Z)
Nomor atom (Z) menujukkan jumlah proton (muatan positif) atau jumlah elektron dalam atom tersebut. Nomor atom ini merupakan ciri khas suatu unsur. Oleh karena atom bersifat netral maka jumlah proton sama dengan jumlah elektronya, sehingga nomor atom juga menujukkan jumlah elektron. Elektron inilah yang nantinya paling menentukan sifat suatu unsur. Nomor atom ditulis agak ke bawah sebelum lambang unsur
2. Nomor Massa (A)
Massa elektron sangat kecil dan dianggap nol sehingga massa atom ditentukan oleh inti atom yaitu proton dan neutron. Nomor massa (A) menyatakan banyaknya proton dan neutron yang menyusun inti atom suatu unsur. Nomor massa ditulis agak ke atas sebelum lambang unsur.
E. Isotop, Isobar, dan Isoton suatu Unsur
1. Isotop
Isotop adalah atom yang mempunyai nomor sama tetapi memiliki nomor massa berbeda
Setiap isotop satu unsur memiliki sifat kimia yang sama karena jumlah elektron valensinya sama.
Isotop-isotop unsur ini dapat digunakan untuk menetukan massa atom relatif (Ar) atom tersebut berdasarkan kelimpahan isotop dan massa atom semua isotop
2. Isobar
Isobar adalah unsur-unsur yang memiliki nomor atom berbeda tetapi nomor massa sama.
3. Isoton
Atom-atom yang berbeda tetapi mempunyai jumlah neutron yang sama
F. Menetukan Elektron Valensi
1. Konfigurasi Elektron
Konfigurasi (susunan) elektron suatu atom berdasarkan kulit-kulit atom tersebut. Setiap atom dapat terisi eletron maksimum 2n2, dimana n merupakan letak kulit.
Lambang kulit dimulai dari K, L, M, N dan seterusnya dimulai dari yang terdekat dengan inti atom.
Elektron disusun sedemikian rupa pada masing-masing kulit dan diisi maksimum sesuai daya tampung kulit tersebut. Jadi masing ada sisa elektron yang tidak dapat ditampung pada kulit tersebut maka diletakkan pada kulit selanjutnya.

2. Elektron Valensi
Elektron yang berperan dalam reaksi pembentukan ikatan kimia dan reaksi kimia adalah elektron pada kulit terluar atau elektron valensi.
Jumlah elektron valensi suatu atom ditentukan berdasarkan elektron yang terdapat pada kulit terakhir dari konfigurasi elektron atom tersebut. Perhatikan Tabel untuk menentukan jumlah elektron valensi

Unsur –unsur yang mempunyai jumlah elektron valensi yang sama akan memiliki sifat kimia yang sama pula.
Kesimpulan Klik di sini
Latihan Soal Klik disini
Atom terdiri dari proton, neutron dan elektron. Proton dan neutron berada di dalam inti atom. Sedangkan elektron terus berputar mengelilingi inti atom karena muatan listriknya. semua elektron bermuatan negatif (-) dan semua proton bermuatan positif (+) . sementara itu neutron bermuatan netral. Elektron bermuatan yang bermuatan negatif (-) ditarik oleh proton yang bermuatan positif (+) pada inti atom.
Dalam hal ini, semua atom di alam semesta akan terjadi bermuatan positif (+) karena ada kelebihan muatan listrik positif (+) di dalam proton. Akibatnya, semua atom akan saling bertolak satu sama lain.
A. Perkembangan Teori Atom
Konsep atom dikemukakan oleh Demokritos yang tidak didukung oleh ekperimen yang menyakinkan, sehingga tidak dapat diterima oleh beberpa ahli ilmu pengetahuan dan filsafat.
Pengembangan konsep atom-atom secara ilmiah dimulai oleh John Dalton (1805), kemudian dilakukan oleh Thomson (1897), Rutherford (1911), dan disempurnakan oleh Bohr (1914)
Hasil ekperimen yang memperkuat konsep atom ini menghasilakn gambaran mengenai susunan parikel-partikel tersebut didalam atom. Gambaran ini berfungsi untuk memudahkan dalam memahami sifat-sifat kimia suatu atom. Gambaran susunan partikel-partikel dasar dalam atom disebut model atom.
- Model Atom Dalton
- Atom merupakan bagian terkecil dari materi yang sudah tidak dapat dibagi-bagi.
- Atom digambarkan sebagai bola pegal yang sangat kecil, suatu unsur memiliki atom-atom yang identik dan berbeda untuk unsur yang berbeda.
- Atom-atom bergabung membentuk senyawa dengan perbandingan bilangan bulat dan sederhana. Misalnya air terdiri atas atom-atom hidrogen dan atom-atom oksigen.
- Reaksi kimia merupakan pemisahan atau penggabungan atau penyusunan kembali dari atom-atom, sehingga atom tidak dapat diciptakan atau dimusnahkan
- Atom merupakan bagian terkecil dari materi yang sudah tidak dapat dibagi-bagi.
2. Model Atom Thomson
Atom adalah bola bulat bermuatan
positif dan di permukaan tersebar
elektron yang bermuatan negatif
3. Model Atom Rutherford
Atom adalah bola berongga yang tersusun dari inti atom dan eletron yang tersusun dari inti atom dan e
4. Model Atom Niels Bohr
-
- Atom terdiri atas inti yang bermuatan positif dan dikelilingi oleh elektron yang bermuatan negatif di dalam suatu lintasan.
- Elektron dapat berpindah dari satu lintasan ke yang lain dengan menyerap atau memancarkan energi sehingga energi elektron atom itu tidak akan berkurang. Jika berpindah lintasan ke lintasan yang lebih tinggi, elektron akan menyerap energi. Jika beralih ke lintasan yang lebih rendah, elektron akan memancarkan energi lebih rendah, elektron akan memancarkan energi.
- Kedudukan elektron-eletron pada tingkat-tingkat energi tertentu yang disebut kulit-kulit elektron.
kulit-kulit elektron bukan kedudukan yang pasti dari suatu elektron, tetapi hanya suatu keboleh jadian saja.
B. Percobaan-percobaan Mengenal Struktur Atom
1. Elektron
Percobaan tabung sinar katode pertama kali dilakukan oleh William Crookes (1875). Hasil ekperimennya yaitu ditemukannya seberkas sinar yang muncul dari arah katode menuju ke anode yang disebut sinar katode.
George Johnstone Stoney (1891) yand mengusulkan nama sinar katode disebut “elektron”. Kelemahan dari stoney tidak dapat menjelaskan pengaruh elektron terhadap perbedaan sifat antara atom suatu unsur dengan atom dalam unsur lainya. Antonine Henri
Beecquerel (1896) menemukan sinar yang dipancarkan dari unsur-unsur radioaktof yang sifatnya mirip dengan elektron.
Joseph John Thomson (1897) melanjutkan eksperimen William Crookes yaitu pengaruh medan listrik dan medan magnet dalam tabung sinar katode.
Hasil percobaan J.J Thomson menujukkan bahwa sinar katode dapat dibelokkan ke arah kutub positif medan listrik. Hal ini membuktikan terdapat partikel bermuatan negatif dalam suatu atom.
Besarnya muatan dalam eletron ditemukan oleh Robert Andreww miliki (1908) melalui percobaan tetes Minyak Milikan seperti gambar berikut.
Minyak disemprotkan kedalam tabung yang bermuatan litrik. Akibat gaya tarik grafitasi akan mengendapkan tetesan minyak yang turun. Apabila tetesan minyak diberi muatan negatif maka akan tertarik ke kutub positif medan listrik. Dari hasil percobaan Milikan dan Thomson diperoleh muatan elektron-1 dan massa elektron 0.
2. Proton
Hasil eksperimen tersebut membuktikan bahwa pada saat terbentuk elektron yang menuju anode, terbentuk pula sinar positif yang menuju arah berlawanan melalui lubang pada katode. Setelah berbagai gas dicoba dalam tabung ini, ternyata gas hidrogenlah yang menghasilkan sinar muatan positif yang paling kecil baik massa maupun muatanya, sehingga partikel ini disebut proton. Massa proton = 1 sma (satuan massa atom) dan muatan proton = +1
3. Inti atom
Setelah penemuan proton dan elektron, Ernest Rutherford melakukan penelitian penembakan lempang tipis emas. Jika atom terdiri dari partikel yang bermuatan positif dan negatif maka sinar alfa yang ditembakkan seharusnya tidak ada yang diteruskan/ menembus lempeng sehingga mincullah istilah inti atom. Ernest Rutherford dibantu oleh Hans Geiger dan Ernest Marsden (1911) menemukan konsep inti atom didukung oleh penemuan sinar X oleh WC. Rontgen (1895) dan penemuan zat radioaktif (1896). Percobaan Rutherford dapat digambarkan sebagai berikut.
Hasil percobaan ini membuat Rutherford menyatakan hipotesisnya bahwa atom tersusun dari inti atom yang bermuatan positif dan dikelilingi elektron yang bermuatan negatif, sehingga atom bersifat netral. Massa inti atom tidak seimbang dengan massa proton yang ada dalam inti atom, sehingga dapt diprediksi bahwa ada partikel lain dalam inti atom.
4. Neutron
Prediksi dari Rutherford memicu W. Bothe dan H. Becker (1930) melakukan eksperimen penembakan partikel pada inti atom berilium (Be) dan dihasilkan radiasi partikel berdaya tembus tinggi.
James Chadwick (1932). Ternyata partikel yang menimbulkan radiasi berdaya tembus tinggi itu bersifat nertal atau tidak bermuatan dan massanya hampir sama dengan proton. Partikel ini disebut neutron dan dilambangkan
C. Menetukan Struktur Atom Berdasarkan Tabel Periodik
1. Partikel Dasar Penyusun Atom
Atom adalah bagian terkecil dari suatu unsur yang masih memiliki sifat unsur tersebut. Struktur atom menggambarkan bagaimana partikel-partikel dalam atom tersusun, atom tersusun atas inti atom dan dikelilingi elektron-elektron yang tersebar dalam kulit-kulitnya. Secara sistematis dapat digambarkan partikel-partikel sub atom berikut.
Sebagian besar atom terdiri dari ruang hampa yang dalamnya terdapat inti yang sangat kecil di mana massa dan muatan positifnya dipusatkan dan dikelilingi oleh elektron-elektron yang bermuatan negatif. Inti atom tersusun atas sejumlah proton dan neutron. Jumlah proton dalam inti atom menentukan muatan inti atom, sedangkan massa atom inti ditentukan oleh banyaknya proton dan neutron. Selanjutnya ketiga partikel sub atom (proton, neutron, dan elektron ) dangan kombinasi tertentu membentuk atom suatu unsur yang lambangnya dapat dituliskan :
X : lambang suatu unsur
Z : nomor atom
A : nomor massa
2. Memahami Susunan dari Sebuah Atom
-
- Lihatlah nomor dari tabel periodik. Nomor atom selalu labih kecil dari nomor massa
- Nomor atom merupakan jumlah proton. Oleh karena sifat atom netral, maka nomor atom juga merupakan jumlah elekton
- Susunan elektron-elektron dalam level-level energi, selalu isi level terdalam sebelum mengisi level luar
- Jumlah elektron tingkat terluar (atau kulit terluar)sama dengan nomor golongan (kecuali helium yang memiliki 2 elektron. Gas mulia biasa disebut dengan golonga 0 bukan golongan 8). Hal ini berlaku diseluruh golongan unsur pada tabel periodik (kecuali unsur-unsur transisi). Jadi, jika anda mengetahui bahwa barium terletak pada golongan 2, bearti barium memiliki 2 elektron pada tingkat teluar.
- Gas mulia memiliki elektron penuh pada tingkat terluar
Suatu atom memiliki sifat dan massa yang khas satu sama lain. Dengan penemuan partikel penyusun atom dikenal istilah nomor atom (Z) dan nomor massa (A)
Penulisan lombang atom unsur menyetarakan nomor atom dan nomor massa.
Dimana :
A = nomor massa
Z = nomor atom
X = lambang unsur
Nomor Massa (A) = Jumlah proton + Jumlah Neutron
Atau
Jumlah Neutron = Nomor massa – Nomor atom
Nomor Atom (Z) = Jumlah proton
1. Nomor Atom (Z)
Nomor atom (Z) menujukkan jumlah proton (muatan positif) atau jumlah elektron dalam atom tersebut. Nomor atom ini merupakan ciri khas suatu unsur. Oleh karena atom bersifat netral maka jumlah proton sama dengan jumlah elektronya, sehingga nomor atom juga menujukkan jumlah elektron. Elektron inilah yang nantinya paling menentukan sifat suatu unsur. Nomor atom ditulis agak ke bawah sebelum lambang unsur
2. Nomor Massa (A)
Massa elektron sangat kecil dan dianggap nol sehingga massa atom ditentukan oleh inti atom yaitu proton dan neutron. Nomor massa (A) menyatakan banyaknya proton dan neutron yang menyusun inti atom suatu unsur. Nomor massa ditulis agak ke atas sebelum lambang unsur.
E. Isotop, Isobar, dan Isoton suatu Unsur
1. Isotop
Isotop adalah atom yang mempunyai nomor sama tetapi memiliki nomor massa berbeda
Setiap isotop satu unsur memiliki sifat kimia yang sama karena jumlah elektron valensinya sama.
Isotop-isotop unsur ini dapat digunakan untuk menetukan massa atom relatif (Ar) atom tersebut berdasarkan kelimpahan isotop dan massa atom semua isotop
2. Isobar
Isobar adalah unsur-unsur yang memiliki nomor atom berbeda tetapi nomor massa sama.
3. Isoton
Atom-atom yang berbeda tetapi mempunyai jumlah neutron yang sama
F. Menetukan Elektron Valensi
1. Konfigurasi Elektron
Konfigurasi (susunan) elektron suatu atom berdasarkan kulit-kulit atom tersebut. Setiap atom dapat terisi eletron maksimum 2n2, dimana n merupakan letak kulit.
Lambang kulit dimulai dari K, L, M, N dan seterusnya dimulai dari yang terdekat dengan inti atom.
Elektron disusun sedemikian rupa pada masing-masing kulit dan diisi maksimum sesuai daya tampung kulit tersebut. Jadi masing ada sisa elektron yang tidak dapat ditampung pada kulit tersebut maka diletakkan pada kulit selanjutnya.
2. Elektron Valensi
Elektron yang berperan dalam reaksi pembentukan ikatan kimia dan reaksi kimia adalah elektron pada kulit terluar atau elektron valensi.
Jumlah elektron valensi suatu atom ditentukan berdasarkan elektron yang terdapat pada kulit terakhir dari konfigurasi elektron atom tersebut. Perhatikan Tabel untuk menentukan jumlah elektron valensi
Unsur –unsur yang mempunyai jumlah elektron valensi yang sama akan memiliki sifat kimia yang sama pula.
Kesimpulan Klik di sini
Latihan Soal Klik disini
Peran Kimia Dalam Kehidupan, Hakikat Ilmu Kimia, Metode Ilmiah dan Keselamatan Kerja
Peran Kimia Dalam Kehidupan, Hakikat Ilmu Kimia, Metode Ilmiah dan Keselamatan Kerja
By Herman,S.Pd on Sept
Peran Kimia Dalam KehidupanSeiring dengan perkembangan zaman yang semakin pesat, baik dalam bidang informasi, komunikasi dan IPTEK. Ilmu kimia juga semakin berkembang secara siknifikan, ini ditandai dengan digunakannya ilmu kimia dalam produk-produk yang dihasilkan manusia, seperti : sabun, detergen, pasta gigi, sampo, kosmetik, obat, dan produk-produk yang dibutuhkan lainnya. Ilmu kimia juga sangat berpengaruh dan memiliki peran yang penting dalam perkembangan ilmu lain, seperti : geologi, pertanian, kesehatan dan dalam menyelesaikan masalah global.
Peran ilmu kimia untuk membantu pengembangan ilmu lainnya seperti pada bidang geologi, sifat-sifat kimia dari berbagai material bumi dan teknik analisisnya telah mempermudah geolog dalam mempelajari kandungan material bumi; logam maupun minyak bumi.
Pada bidang pertanian, analis kimia mampu memberikan informasi tentang kandungan tanah yang terkait dengan kesuburan tanah, dengan data tersebut para petani dapat menetapkan tumbuhan/tanaman yang tepat. Kekurangan zat-zat yang dibutuhkan tanaman dapat dipenuhi dengan pupuk buatan, demikian pula dengan serangan hama dan penyakit dapat menggunakan pestisida dan Insektisida.
Dalam bidang kesehatan, ilmu kimia cukup memberikan kontribusi, dengan diketemukannya jalur perombakan makanan seperti karbohidrat, protein dan lipid. Hal ini mempermudah para ahli bidang kesehatan untuk mendiagnosa berbagai penyakit. Interaksi kimia dalam tubuh manusia dalam sistem pencernaan, pernafasan, sirkulasi, ekskresi, gerak, reproduksi, hormon dan sistem saraf, juga telah mengantarkan penemuan dalam bidang farmasi khususnya penemuan obat-obatan
- Di bidang pertanian
- Di bidang kedokteran
- Di bidang pangan
- Di bidang industri/pabrik
- Di bidang Hukum
- peran Kimia dalam Menyelesaikan Masalah Global
Bahan Bakar
Saat ini bahan bakar dunia, berupa minyak bumi, batu bara, gas alam yang berasal dari fosil. Fosil merupakan sumber daya alam yang tidak dapat diperbaharui, karena fosil terbentuk dari organisme yang terkubur beberapa jutaan tahun lalu. Bahan bakar tersebut akan habis dan manusia harus dapat mencari sumber energi alternatif, untuk mengatasi krisis enegri tersebut. Dalam hal ini ilmu kimia sangat berperan. Contoh sumber energi alternatif misalnya alkohol, energi nuklir, geoternal (panas bumi) atau energi matahari yang tak terbatas.
Teknologi Biogas
Ternak-ternak di pedesaan dapat menimbulkan masalah lingkungan, karena kotorannya yang berserakan dapat menimbulkan bau yang tidak enak, kotoran ternak juga merusak pemandangan di desa, bahkan dapat menjadi sumber penularan penyakit. Dengan teknologi biogas, permasalahan tersebut, dapat diatasi, dimana kotoran hewan tersebut diolah hingga bermanfaat bagi manusia. Pembuatan biogas menggunakan bahan baku kotoran hewan/ternak yang dibubur halus menjadi butiran kecil dan dicampur air. Hasil teknologi biogas tersebut dapat digunakan sebagai sumber energi, misalnya untuk lampu penerangan maupun untuk memasak
Program Langit Biru
Program Langit Biru artinya program yang bertujuan untuk meminimalisasikan polusi udara akibat dari pemanfaatan energi. Polusi udara tersebut diakibatkan dari emisi gas buang yang ditimbulkan dari pemanfaatan energi. Transportasi merupakan salah satu penyebab polusi udara. Emisi gas buang tersebut misalnya Karbon Monoksida (CO), Hidrokarbon, Nitrogen Oksida, Sulfur dioksida, Timah hitam (Pb) dan debu. Jenis dan jumlah pencemaran ini dipengaruhi oleh beberapa faktor jenis energi, jenis kendaraan, umur kendaraan, ukuran mesin dan perawatan kendaraan tersebut.
Bahan Kimia dalam Berbagai Produk
Perkembangan ilmu kimia yang siknifikan mengakibatkan produk-produk yang dibutuhkan manusia juga menggunakan bahan kimia. Banyak sekali produk-produk yang menggunakan bahan kimia antara lain:
- Sabun
Banyak juga sabun yang merupakan campuran garam natrium atau kalium dari asam lemak yang dapat diturunkan dari minyak atau lemak dengan direaksikan dengan alkali (seperti natrium atau kalium hidroksida) pada suhu 80–100 °C melalui suatu proses yang dikenal dengan saponifikasi. Lemak akan terhidrolisis oleh basa, menghasilkan gliserol dan sabun mentah. Secara tradisional, alkali yang digunakan adalah kalium yang dihasilkan dari pembakaran tumbuhan, atau dari arang kayu. Sabun dapat dibuat pula dari minyak tumbuhan, seperti minyak zaitun.
Kandungan utama sabun adalah Na-karboksilat (RCOONa), sabun mandi dibuat dari campuran basa dengan minyak. Umumnya basa yang digunakan adalah kalium hidroksida (KOH). Pada beberapa sabun mandi ditambahkan sulfur yang berfungsi sebagai antiseptik. Garam mandi merupakan zat aditif yang berfungsi memberi nilai tambah bagi sebuah peran sabun mandi. Garam mandi umumnya mengandung garam-garam anorganik, minyak esensial dan pewangi.
Sodium Lauryl Sulfate (SLS) adalah bahan kimia berbahaya bagi kulit yang biasanya dapat ditemukan dalam produk-produk seperti: pada pasta gigi dan sabun. Bahan kimia ini, merupakan salah satu bahan pembersih surfaktan yang dapat mengangkat kotoran dan noda minyak. Bahan kimia ini memiliki sifat sebagai bahan pembersih yang sangat kuat, dan biasanya bahan kimia ini dicampur ke dalam produk pembersih karena memiliki kemampuan untuk menghasilkan busa yang banyak.
Namun, meskipun memiliki kemampuan yang kuat sebagai pembersih, Sodium Lauryl Sulfate (SLS) ini jika digunakan dalam jangka waktu panjang, dapat mengakibatkan iritasi yang tinggi pada kulit. Dan untuk jangka pendeknya mengakibatkan alergi, gatal-gatal, kulit kering serta kemerahan. Efek samping ini dapat terlihat jelas pada orang yang memiliki jenis kulit sensitive. Selain itu karena daya pembersihnya yang kuat, SLS ini dapat mengangkat dan mengikis lemak yang sangat berguna bagi kulit. Padahal lemak memiliki peran yang sangat penting bagi kulit karena dapat melindungi kulit dari radikal bebas, sengatan sinar matahari dan juga hal-hal yang dapat mengganggu kesehatan dan kelembaban kulit, seperti alergi dan iritasi.
- Susu
Menggunakan tes yang sangat sensitif, mereka menemukan sejumlah bahan kimia yang digunakan untuk mengobati penyakit pada hewan dan manusia, dengan menggunakan sample pada sapi, kambing, dan air susu ibu.
Dosis obat pada bahan kima tersebut memang kecil untuk berefek pada orang yang meminumnya. Tetapi, hasil tersebut menunjukan bagaimana bahan kimia buatan manusia sekarang ditemukan di seluruh rantai makanan. Bahkan, jumlah tertinggi penggunaan bahan kimia banyak ditemukan dalam susu sapi.
Para peneliti percaya beberapa obat dan promotor pertumbuhan diberikan kepada ternak guna mendapatkan susu melalui pakan ternak yang telah terkontaminasi. Tim peneliti Spanyol dan Maroko menganalisis 20 sampel susu sapi yang dibeli di Spanyol dan Maroko, bersama dengan sampel susu kambing dan air susu ibu.
Kerusakan tersebut mereka publikasikan dalam Journal of Agricultural and Food Chemistry yang menyatakan bahwa susu sapi mengandung sisa anti-inflamasi obat asam niflumic, asam mefenamat dan ketoprofen. Biasanya digunakan sebagai obat penghilang rasa sakit pada hewan dan manusia.
Tidak hanya itu, dalam susu tersebut juga mengandung hormon 17 beta estradiol, suatu bentuk estrogen hormon seks. Hormon terdeteksi pada tiga sepersejuta gram dalam setiap kilogram susu, sedangkan dosis tertinggi asam niflumic kurang dari sepersejuta gram per kilogram susu. Namun, para ilmuwan, yang dipimpin oleh Dr Evaristo Ballesteros, dari University of Jaen di Spanyol, mengatakan,”teknik mereka bisa digunakan untuk memeriksa keselamatan makanan jenis lain”.
- Garam Dapur
Sodium Chlorida atau Natrium Chlorida (NaCl) yang dikenal sebagai garam adalah zat yang memiliki tingkat osmotik yang tinggi. Zat ini pada proses perlakuan penyimpanan benih recalsitran berkedudukan sebagai medium inhibitor yang fungsinya menghambat proses metabolisme benih sehingga perkecambahan pada benih recalsitran dapat terhambat. Dengan kemampuan tingkat osmotik yang tinggi ini maka apabila NaCl terlarut di dalam air maka air tersebut akan mempunyai nilai atau tingkat konsentrasi yang tinggi yang dapat mengimbibisi kandungan air (konsentrasi rendah)/low concentrate yang terdapat di dalam tubuh benih sehingga akan diperoleh keseimbangan kadar air pada benih tersebut. Hal ini dapat terjadi karena H2O akan berpindah dari konsentrasi yang rendah ke tempat yang memiliki konsentrasi yang tinggi. Hal ini merupakan hal yang sangat menguntungkan bagi benih recalsitran, karena sebagaimana kita ketahui benih recalsitran yaitu benih yang memiliki tingkat kadar air yang tinggi dan sangat peka terhadap penurunan kadar air yang rendah. Kadar air yang tinggi menyebabkan benih recalsitran selalu mengalami perkecambahan dan berjamur selama masa penyimpanan atau pengiriman ketempat tujuan. Namun dengan perlakuan konsentrasi sodium chlorida (NaCl) maka hal ini dapat teratasi.
- Asam Cuka
Selain digunakan dalam industri makanan dan rumah tangga, asam asetat juga digunakan dalam industri produksi polimer dan berbagai macam serat dan kain, dan industri obat-obatan. Asam asetat yang digunakan dalam industri makanan haruslah asam cuka makan. Asam asetat encer, seperti pada cuka, tidak berbahaya. Namun konsumsi asam asetat yang lebih pekat berbahaya bagi manusia maupun hewan. Hal itu dapat menyebabkan kerusakan pada sistem pencernaan, dan perubahan yang mematikan pada keasaman darah.
Komposisi utama cuka terdiri dari asam asetat atau lebih dikenal asam cuka (acetic acid), juga mengandung asam amino (amino acid), asam organik (organic acid), zat gula (saccharides), vitamin B1 dan B2. Cuka memiliki beberapa fungsi, antara lain: membasmi kuman, menghilangkan racun dan bau amis. Ketika membuat ikan asinan, tambah sedikit cuka akan hindarkan remuk dan busuk. Dalam pengolahan hidangan seafood mentah seperti oyster dan kepiting laut, menggunakan cuka akan mampu membasmi kuman dan hilangkan rasa amis dalam 10 menit.
Hakikat Ilmu Kimia
Nama ilmu kimia berasal dari bahasa Arab, yaitu al-kimia yang artinya perubahan materi, oleh ilmuwan Arab Jabir ibn Hayyan (tahun 700-778). Ini berarti, ilmu kimia secara singkat dapat diartikan sebagai ilmu yang mempelajari rekayasa materi, yaitu mengubah materi menjadi materi lain. Secara lengkapnya, ilmu kimia adalah ilmu mempelajari tentang susunan, struktur, sifat, perubahan serta energi yang menyertai perubahan suatu zat atau materi. Zat atau materi itu sendiri adalah segala sesuatu yang menempati ruang dan mempunyai massa.
Susunan materi mencakup komponen-komponen pembentuk materi dan perbandingan tiap komponen tersebut. Struktur materi mencakup struktur partikel-partikel penyusun suatu materi atau menggambarkan bagaimana atom-atom penyusun materi tersebut saling berikatan. Sifat materi mencakup sifat fisis (wujud dan penampilan) dan sifat kimia. Sifat suatu materi dipengaruhi oleh : susunan dan struktur dari materi tersebut. Perubahan materi meliputi perubahan fisis/fisika (wujud) dan perubahan kimia (menghasilkan zat baru). Energi yang menyertai perubahan materi menyangkut banyaknya energi yang menyertai sejumlah materi dan asal-usul energi itu.
Berfikir radikal merupakan awal lahirnya kimia. Dahulu, ilmuwan menganggap secara radikal atau bebas tentang definisi atom dan model atom. Pikiran radikal diperoleh dari dari kemauan dan kemampuan suatu otak untuk memikirkan sesuatu yang abstrak ataupun empriris. Cara berpikir radikal ini, mempunyai manfaat yang besar dalam perkembangan dunia kimia. Salah satu mendorong ilmuwan untuk melakukan perenungan berpikir untuk menemukan kelanjutan dari pikiran radikalnya. Banyak sekali muncul teori-teori tentang atom yang yang diawali oleh berfikir yang pokok atau fundamental dari fenomena dasar mengenai penyusun suatu materi.
Hakikat ilmu kimia adalah bahwa benda itu bisa mengalami perubahan bentuk, maupun susunan partikelnya menjadi bentuk yang lain sehingga terjadi deformasi, perubahan letak susunan, ini mempengaruhi sifat-sifat yang berbeda dengan wujud yang semula.
Fakta yang terdapat di alam mempunyai banyak hubungan dengan ilmu kimia. Dari ciri pemikiran filsafat yang telah dipelajari mempunyai arti besar dalam menumbuhkan sikap kritis terhadap suatu fakta. Sikap kritis ini merangsang otak untuk mengajukan berbagi pertanyaan terhadap fenomena yang ada. Sebagai contoh : fakta kimia yaitu larutan elektrolit dan non-elektrolit. Dari sikap kritis muncul pertanyaan : apa yang menyebabkan larutan elektrolit dapat menghantarkan arus listrik dan apa yang menyebabkan larutan non-elektrolit tidak dapat menghantarkan arus listrik, bagaimana ciri-ciri larutan elektrolit dan non-elektrolit, dan lain-lain.
Ilmu kimia diperlukan dan terlibat dalam kegiatan industri dan perdagangan, kesehatan, dan berbagai bidang lain. Kedepan, Ilmu Kimia sangat berperan dalam penemuan dan pengembangan material dan sumber energi baru yang lebih bermanfaat, bernilai ekonomis tinggi, dan lebih ramah lingkungan.
Konsep dasar Kimia merupakan kumpulan beberapa hal penting yang akan dipelajari atau dibahas dalam Ilmu Kimia. Beberapa hal yang termasuk dalam Konsep Dasar Kimia, antara lain adalah :
- Tatanama
- Atom
- Unsur
4. Ion
Ion atau spesies bermuatan, atau suatu atom atau molekul yang kehilangan atau mendapatkan satu atau lebih elektron. Kation bermuatan positif (misalnya kation natrium Na+) dan anion bermuatan negatif (misalnya klorida Cl-) dapat membentuk garam netral (misalnya natrium klorida, NaCl).
- Senyawa
- Molekul
- Zat Kimia
- Ikatan Kimia
- Wujud Zat
10. Reaksi Kimia
Reaksi kimia adalah transformasi/perubahan dalam struktur molekul. Reaksi ini bisa menghasilkan penggabungan molekul membentuk molekul yang lebih besar, pembelahan molekul menjadi dua atau lebih molekul yang lebih kecil, atau penataulangan atom-atom dalam molekul. Reaksi kimia selalu melibatkan terbentuk atau terputusnya ikatan kimia.
Metode Ilmiah dan Keselamatan Kerja
A. Metode ilmiah
Metode ilmiah atau dalam bahasa inggris dikenal sebagai scientific method adalah proses berpikir untuk memecahkan masalah secara sistematis,empiris, dan terkontrol.
Metode ilmiah berangkat dari suatu permasalahan yang perlu dicari jawaban atau pemecahannya. Proses berpikir ilmiah dalam metode ilmiah tidak berangkat dari sebuah asumsi, atau simpulan, bukan pula berdasarkan data atau fakta khusus. Proses berpikir untuk memecahkan masalah lebih berdasar kepada masalah nyata. Untuk memulai suatu metode ilmiah, maka dengan demikian pertama-tama harus dirumuskan masalah apa yang sedang dihadapi dan sedang dicari pemecahannya. Rumusan permasalahan ini akan menuntun proses selanjutnya.
Dalam metode ilmiah, proses berpikir dilakukan secara sistematis dengan bertahap, tidak zig-zag. Proses berpikir yang sistematis ini dimulai dengan kesadaran akan adanya masalah hingga terbentuk sebuah kesimpulan. Dalam metode ilmiah, proses berpikir dilakukan sesuai langkah-langkah metode ilmiah secara sistematis dan berurutan.
Setiap metode ilmiah selalu disandarkan pada data empiris. maksudnya adalah, bahwa masalah yang hendak ditemukan pemecahannya atau jawabannya itu harus tersedia datanya, yang diperoleh dari hasil pengukuran secara objektif. Ada atau tidak tersedia data empiris merupakan salah satu kriteria penting dalam metode ilmiah. Apabila sebuah masalah dirumuskan lalu dikaji tanpa data empiris, maka itu bukanlah sebuah bentuk metode ilmiah.
Di saat melaksanakan metode ilmiah, proses berpikir dilaksanakan secara terkontrol. Maksudnya terkontrol disini adalah, dalam berpikir secara ilmiah itu dilakukan secara sadar dan terjaga, jadi apabila ada orang lain yang juga ingin membuktikan kebenarannya dapat dilakukan seperti apa adanya. Seseorang yang berpikir ilmiah tidak melakukannya dalam keadaan berkhayal atau bermimpi, akan tetapi dilakukan secara sadar dan terkontrol.
Karena metode ilmiah dilakukan secara sistematis dan berencana, maka terdapat langkah-langkah yang harus dilakukan secara urut dalam pelaksanaannya. Setiap langkah atau tahapan dilaksanakan secara terkontrol dan terjaga. Adapun langkah-langkah metode ilmiah adalah sebagai berikut:
- Observasi
- Merumuskan Hipotesis
- Mengumpulkan Data
- Melakukan Eksperimen / Menguji Hipotesis
- Perumusan Teori
- Merumuskan kesimpulan
B. Keselamatan Kerja
Setiap pekerjaan pasti ada resikonya. Tingkat resiko tersebut ada yang kecil, ada juga yang besar. Keselamatan kerja di laboratorium merupakan usaha atau tindakan pencegahan agar di dalam kegiatan di laboratorium terhindar dari kecelakaan sekecil apapun. Sehubungan dengan kemungkinan timbul bahaya-bahaya di dalam kegiatan laboratorium, maka perlunya mengetahui bahaya yang ditimbulkan oleh benda-benda atau barang-barang yang ada di laboratorium.
Tata tertib ini penting untuk menjaga kelancaran dan keselamatan pekerja/praktikum di dalam laboratorium. Berikut ini beberapa contoh tata tertib.
- Alat-alat serta bahan yang ada di dalam laboratorium tidak diperkenankan diambil keluar tanpa seizin guru.
- Alat dan bahan harus digunakan sesuai dengan petunjuk praktikum yang diberikan.
- Jika dalam melakukan percobaan tidak mengerti atau ragu-ragu, hendaknya segera bertanya kepada guru.
- Bekerja di laboratorium hendaknya memakai jas laboratorium.
- Jika ada alat yang rusak atau pecah, hendaknya dengan segera dilaporkan kepada guru.
- Jika terjadi kecelakaan, sekalipun kecil, seperti kena kaca, terbakar, atau terkena bahan kimia, hendaknya segera dilaporkan ke guru.
- Etiket (label) bahan yang hilang atau rusak harus segera diberitahukan kepada guru, agar dapat segera diganti.
- Tidak diperkenankan makan, minum dan merokok di dalam laboratorium.
- Setelah selesai percobaan, alat-alat hendaknya dikembalikan ke tempat semula dalam keadaan bersih.
- Buanglah sampah pada tempatnya.
- Sebelum meninggalkan laboratorium, meja praktikum harus dalam keadaan bersih, kran air dan gas ditutup, dan kontak listrik dicabut.
- Botol-botol yang berisi bahan kimia disimpan pada rak atau lemari yang disediakan khusus untuk itu.
- Jangan mengisi botol-botol sampai penuh.
- Jangan menggunakan tutup dari kaca untuk botol yang berisi basa, karena lama kelamaan tutup itu akan melekat pada botol dan susah dibuka.
- Semua peralatan/gelas kimia yang berisi bahan kimia harus diberi label yang menyatakan nama bahan itu.
- Bahan kimia yang dapat bereaksi hebat hendaknya jangan disimpan berdekatan.
- Bahan-bahan kimia yang sangat beracun dan berbahaya hendaknya dibeli dalam jumlah kecil dan tanggai pembeliannya dicatat.
- Semua bahan persediaan bahan kimia secara teratur diteliti.
Hal-hal yang perlu diperhatikan dalam penggunaan zat-zat kimia, yaitu:
- Tabung reaksi yang berisi zat kimia tidak boleh diarahkan ke wajah sendiri atau orang lain.
- Senyawa kimia tidak boleh dibau.
- Larutan kimia yang tertuang di meja praktikum atau di lantai dibersihkan segera dengan cara asam pekat dinetralkan dahulu dengan serbuk NaHC03. Basa kuat dinetralkan dahulu dengan serbuk NH4CI, kemudian ditambah air yang cukup.
- Larutan pekat yang tidak terpakai harus dibuang setelah diencerkan dengan air terlebih dahulu. Mulut tabung reaksi atau bejana, selama digunakan untuk pencampuran atau pemanasan tidak boleh ditengok langsung.
- Senyawa/zat kimia tertentu (asam kuat dan basa kuat) tidak boleh dicampur karena akan terjadi reaksi yang dahsyat, kecuali sudah diketahui pasti tidak menimbulkan bahaya.
- Penggunaan pelindung wajah sangat diperlukan jika menangani zat-zat/senyawa-senyawa kimia yang berbahaya, dan jangan mengembalikan zat/senyawa kimia yang terlanjur tertuang untuk dikembalikan ke botol asalnya.
Minggu, 31 Agustus 2014
silabus kimia sma X (X.3 Struktur Lewis, Ikatan Kimia)
SILABUS MATA PELAJARAN KIMIA
(Peminatan Bidang MIPA)
Satuan
Pendidikan : SMA
Kelas : X
Kompetensi Inti :
X,3 Struktur Lewis, Ikatan Kimia
KI 1 : Menghayati dan mengamalkan ajaran agama yang
dianutnya
KI 2 : Menghayati
dan mengamalkan perilaku jujur, disiplin,
tanggungjawab, peduli (gotong royong, kerjasama, toleran, damai), santun,
responsif dan pro-aktif dan menunjukkan sikap sebagai bagian dari solusi atas
berbagai permasalahan dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta dalam
menempatkan diri sebagai cerminan bangsa dalam pergaulan dunia.
KI 3 : Memahami ,menerapkan, menganalisis pengetahuan
faktual, konseptual, prosedural berdasarkan rasa ingintahunya tentang ilmu
pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan
peradaban terkait penyebab fenomena dan kejadian, serta menerapkan
pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah.
KI 4 : Mengolah, menalar, dan menyaji dalam ranah konkret
dan ranah abstrak terkait dengan
pengembangan dari yang dipelajarinya di sekolah secara mandiri, dan mampu
menggunakan metoda sesuai kaidah keilmuan
Kompetensi Dasar
|
Materi Pokok
|
Kegiatan Pembelajaran
|
Penilaian
|
Alokasi Waktu
|
Sumber Belajar
|
1.1
Menyadari adanya keteraturan struktur partikel materi sebagai wujud kebesaran
Tuhan YME dan pengetahuan tentang struktur partikel
materi sebagai hasil pemikiran
kreatif manusia yang kebenarannya
bersifat tentatif.
|
· Struktur Lewis
· Ikatan ion dan ikatan kovalen
· Ikatan kovalen koordinasi
· Senyawa kovalen polar dan non
polar.
· Ikatan logam
· Gaya antar molekul
· Sifat fisik senyawa.
|
Mengamati
·
Membaca tabel titik leleh beberapa
senyawa ion dan senyawa kovalen
·
Membaca
titik didih senyawa hidrogen
halida.
·
Mengamati
struktur Lewis beberapa unsur.
Menanya
·
Dari tabel
tersebut muncul pertanyaan, mengapa ada senyawa yang titik lelehnya rendah dan ada yang titik
lelehnya tinggi?
·
Mengapa titik didih air tinggi pada hal air mempunyai massa molekul relatif kecil?
·
Mengapa atom logam cenderung
melepaskan elektron? Mengapa atom nonlogam cenderung menerima elektron dari
atom lain? Bagaimana proses terbentuknya ikatan ion? Bagaimana ikatan kovalen
terbentuk? Apakah ada hubungan antara ikatan kimia dengan sifat fisis
senyawa?
|
Tugas :
· Merancang
percobaan tentang kepolaran senyawa
Observasi
·
Sikap ilmiah dalam mencatat data hasil percobaan
Portofolio
· Laporan percobaan
Tes tertulis uraian
·
Membandingkan proses pemben-tukan
ion dan ikatan kovalen.
·
Membedakan ikatan kovalen tunggal dan ikatan kovalen rangkap
·
Menganalisis kepolaran senyawa
·
Menganalisis hubungan antara jenis ikatan dengan sifat fisis senyawa
·
Menganalisis bentuk molekul
|
10
mgg x 3 jp
|
· Buku teks kimia
· Literatur lainnya
· Encarta Encyclopedia
· Lembar kerja
|
2.1
Menunjukkan perilaku ilmiah
(memiliki rasa ingin tahu, disiplin,
jujur, objektif, terbuka, mampu membedakan fakta dan opini, ulet,
teliti, bertanggung jawab, kritis, kreatif, inovatif, demokratis, komunikatif )
dalam merancang dan melakukan percobaan serta berdiskusi yang diwujudkan
dalam sikap sehari-hari.
2.2 Menunjukkan
perilaku kerjasama, santun,
toleran, cintadamai dan peduli lingkungan serta hemat dalam memanfaatkan sumber daya
alam.
2.3 Menunjukkan perilaku responsif, dan
proaktif serta bijaksana sebagai wujud kemampuan memecahkan masalah dan membuat
keputusan.
|
|||||
Langganan:
Komentar (Atom)